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SUMMARY
It is well known that linear regression analysis is one of the commonly used statistical tools in various fields. The ordinary least squares (OLS) is 
generally adopted to estimate the parameters in the model provided all the necessary assumptions are satisfied. OLS is widely used because of its 
desirable properties like unbiasedness, minimum variance, consistency, asymptotic unbiasedness etc. However, outcomes of OLS may be affected 
if some of the assumptions do not hold properly. Presence of outliers is one of the main reason to deliver poor results in OLS. So, it is very much 
important to use a robust method for parameter estimation which is not much affected by outliers. Robust regression analysis is a statistical technique 
which is an improvement to least squares estimation to cope or to detect the outliers. In other words, the robust regression analysis performs well 
when the assumptions are not satisfied by the data. One can transform variables to deal with the data when some of the assumptions are substantially 
violated. But, the influence of outliers has often not been attenuated by the transformation. So it is better to use robust regression that is resistant to 
the influence of outliers. In this paper, OLS and two robust regression methods (M and S estimation) are discussed and applied to run the regression 
model on baseball data. It has been seen that S estimation method outperformed the OLS and M estimation.
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1.	 INTRODUCTION
Regression is one of the popular methods among 

statisticians. OLS method is popularly used to 
estimate the parameters of the regression model. But, 
OLS method is highly sensitive to outliers. Even a 
single outlier has potential to distort the significance 
of parameter estimates. On the other hand, robust 
regression curbs the influence of outliers. The principal 
aim of robust regression is to provide resistant results 
in the presence of outliers. 

It is well known that one of the assumptions of 
linear regression is normality of the residuals. This 
normality assumption is breached due to the presence 
of outlier. So, an outlier has the potential to violate the 
assumption of linear regression. But, the solution is also 
available to attenuate the effect of outlier. One solution 
is to transform one or more explanatory variables or 
response variable. One may go through the adjustment 
of the model by adding higher order terms. However, 

these solutions may fail to provide a significant 
result. The problem will arise more when the error 
distribution is heavier tailed than normal. But, robust 
regression method is appropriate in this case. In reality, 
each observation is equally weighted in least square 
estimation whether it is normal or extreme observation. 
In case of robust regression method, weighting is given 
to observation unequally. Robust methods give lower 
weightage to the extreme observation. That’s why, it 
can be effective to the outlier data appropriately.

Huber (1973,1981) who first introduced robust 
regression estimators which are also known as 
M regression estimators. A few commonly used 
M–‌estimators are , , , Huber,   , 
Cauchy, German-Maclure, Welsh estimator etc. 
However, they have many pros and cons. M estimator 
is robust only when the contamination occurs in the 
response direction but it is not robust with respect 
to leverage points. Leverage points are the extreme 
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observations in the predictor space, whereas outliers 
are in the response space. In some situations, extreme 
observation is observed in both response and predictor 
space, which is known as influence point.

Hampel (1975) suggested an estimator whose 
breakdown point is 0.50, which means it can resist the 
effect of outliers up to 50%. The estimator is based 
on minimizing the median absolute deviation of the 
residuals. S estimator is nothing but the generalization 
of least median squares which was introduced by 
Rousseeuw and Yohai (1984). The reason behind the 
name of S estimator is that they are based on estimators 
of scale. S  estimator also has some good robustness 
properties such as bounded influence, higher breakdown 
point (50%) etc.

2.	 LINEAR REGRESSION
In matrix notation, linear regression model can be 

written as
	 � (1)
where,  is a  vector of observed response 

values,
 is a matrix of  order of the predictor 

variables,
 is a vector of parameters of order  and  is 

a vector of error of order .
OLS is the most commonly used regression 

method to estimate the parameters. The OLS estimate 
is obtained by minimization of sum of squares of 
residuals ( ) of the above mentioned model.

The parameters are determined by taking the 
partial derivatives of  with respect to , and setting 
the results equal to zero. The solution will be

	 � (2)
But, this estimator has been losing its reliability 

for lack of robustness in spite of its simplicity to 
compute. It has already been mentioned that one 
outlier can spoil various assumptions. Due to presence 
of outliers, values may not be identically distributed 
and the property of homoscedasticity may also be 
violated. These assumptions have to be fulfilled for 
the validation of OLS regression model. When the 
regression model does not meet the fundamental 
assumptions, the prediction and estimation of the model 
may become biased. Residuals, differences between the 
values predicted by the model and the real data that are 

very large can seriously distort the prediction. When 
these residuals are extremely large, they are called 
outliers. The outliers inflate the error variance, so that 
confidence interval becomes stretched and estimation 
cannot become asymptotically consistent. 

3.	 ROBUST REGRESSION
Robust regression estimation is an alternative 

to OLS at the time of unfulfillment of fundamental 
assumption. The sole cause of unfulfilled assumption 
is the outliers. Robust regression dampens the effect of 
outliers (Draper and Smith, 2014) and gives a stable 
result as compared to OLS. 

The important properties of robust regression are-
1.	 Breakdown point (BDP): BDP represents the 

ability of the estimator to withstand in the presence 
of outliers (Chen, 2002) which is usually expressed 
in percentage. Suppose, a robust estimator has 30% 
BDP. It means that robust regression estimation 
provides a stable or useable estimator when 30% 
of data comprises outlier. BDP of OLS is 0% which 
means that one outlier is sufficient to distort the 
estimation.

2.	 Efficiency: Efficiency of robust regression is 
measured as compared to OLS.

	 Efficiency of Robust Estimator:-
	
3.	 Bounded influence: To cope up the problem of 

estimator with leverage, the bounded influence is 
designed; Ex. - Generalized M or GM estimation, 
S‑estimation. This property shows the ability of 
estimator to provide robust result in the presence 
of leverage.

	 Robust model should have following characteristics-
	 a.	 Model should be unbiased.
	 b.	 Model should be efficient.
	 c.	 If the assumptions are violated, then the 

performance of the model is not substantially 
affected much.

	 d.	 It is asymptotically normal. 

3.1	 M-estimation
M‑estimation is the most common robust 

regression estimation method. In fact, M‑estimation 
is the generalization of maximum likelihood 
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estimation. That’s why, the name of this estimation is 
‘M‑estimation’ which based on the minimization the 
sum of a function  of the residuals. M estimators 
are obtained by minimizing the objective function over 
all  as follows:

� (3)
	 where, 

	  is the jth residual; 
	  (observations) and 
	  (parameters).

The noteworthy properties of  function are-
1.	 It is always nonnegative.
2.	 It is symmetric.
3.	 It is equal to zero when its argument is zero.
4.	 It is a monotonic function.

Least square is the special case of M‑estimation 
when . This least square estimator satisfies 
all the above mentioned properties of  function.

To estimate the M regression parameters, the 
estimator should be scale equivariant. It is necessary 
to go with the standardization of the residuals when it 
is not scale equivariant. Usually, a popular estimator  
is used to make scale equivariant which is known as 
rescaled MAD (Median Absolute Deviation). So. The 
re-scaled MAD is:

	 � (4)
where, the formula for MAD (median absolute 

deviation) is: 

MAD = � (5)
So, need to minimize, 

� (6)

Partial derivative of  with respect to , 

� (7)

Next step is to choose the  function. Many 
functions have been defined in literature, viz. Huber’s 
function, Tukey’s bi-weight function etc. Here, Tukey’s 
bi-weight objective function has been used which is 

more resistant to the outliers as compared to the Huber 
M-estimator (Andersen, 2008) and taken the tuning 
constant  to get 95% efficiency. So, the  
function is;

, � (8)

�(9)

, � (10)

Generally weight function is defined by,

� (11)

Using equation (11), equation (7) can be written as 
(weight is used from Tukey’s bi-weight function),

� (12)

After solving the equation (12), it gives an estimator 
for  that is;

� (13)

It is an iterative process. At each step, the estimate 
value of  is obtained. To begin the iteration process, 
estimated parameters using OLS are used. Then, the 
value of residual is obtained. Next step is to calculate 
the value of , ,  respectively. Then, new estimate 
of  will be found by the equation (13). At next 
iteration; the same process will be repeated and get the 
another estimate of . At each iteration, a new estimate 
of  will be obtained. Iteration will be continuing until 
the consecutive estimates are sufficiently close to one 
another.

Convergence Criterion: , Here, 
.
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3.2	 S-estimation
S-estimation is based on the residual scale of 

M‑estimation. S‑estimation is the solution to overcome 
the drawback of M‑estimation. S‑estimation too has 
robustness properties viz. BDP, efficiency and bounded 
influence. This method uses the residual standard 
deviation to overcome the weakness of median. 
S‑estimation is the generalization of least median 
squares which was introduced by Rousseeuw and Yohai 
(1984). It is defined as the minimization of dispersion 
of residuals; 

	 � (14)

where  is the dispersion of residuals. The 
dispersion  is the solution of,

 = � (15)

Two types of function for  can be used which are-
1.	 Tukey’s bi-square function
2.	 Yohai’s optimal function

Here, Tukey’s bi-square function has been used as  
function which satisfies all the properties as mentioned 
in M‑estimation. That is;

, � (16)

� (17)

, � (18)

where,  which is known as tuning 
constant. It controls breakdown value and efficiency 
with 50% breakdown value. The final solution of 
eq. (15) will come from an iterative procedure which 
was given by Marazzi (1993).

4.	 APPLICATION

4.1	 Data description
A data of major baseball players has been taken from 

the Baseball, Encyclopedia (9th edition, Macmillan). 
Analysis has been done using SAS software. Here, one 
dependent variable and five explanatory variables have 
been used. They are:

Table 1. Data of major baseball players

0.283 0.144 0.049 0.012 0.013 0.086

0.276 0.125 0.039 0.013 0.002 0.062

0.281 0.141 0.045 0.021 0.013 0.074

0.328 0.189 0.043 0.001 0.03 0.032

0.29 0.161 0.044 0.011 0.07 0.076

0.296 0.186 0.047 0.018 0.05 0.007

0.248 0.106 0.036 0.008 0.012 0.095

0.228 0.117 0.03 0.006 0.003 0.145

0.305 0.174 0.05 0.008 0.061 0.112

0.254 0.094 0.041 0.005 0.014 0.124

0.269 0.147 0.047 0.012 0.009 0.111

0.3 0.141 0.058 0.01 0.011 0.07

0.307 0.135 0.041 0.009 0.005 0.065

0.214 0.1 0.037 0.003 0.004 0.138

0.329 0.189 0.058 0.014 0.011 0.032

0.31 0.149 0.05 0.012 0.05 0.06

0.252 0.119 0.04 0.008 0.049 0.233

0.308 0.158 0.038 0.013 0.003 0.068

0.342 0.259 0.06 0.016 0.085 0.158

0.358 0.193 0.066 0.021 0.037 0.083

0.34 0.155 0.051 0.02 0.012 0.04

0.304 0.197 0.052 0.008 0.054 0.095

0.248 0.133 0.037 0.003 0.043 0.135

0.367 0.196 0.063 0.026 0.01 0.031

0.325 0.206 0.054 0.027 0.01 0.048

0.244 0.11 0.025 0.006 0 0.061

0.245 0.096 0.044 0.003 0.022 0.151

0.318 0.193 0.063 0.02 0.037 0.081

0.207 0.154 0.045 0.008 0 0.252

0.32 0.204 0.053 0.017 0.013 0.07

0.243 0.141 0.041 0.007 0.051 0.264

0.317 0.209 0.057 0.03 0.017 0.058

0.199 0.1 0.029 0.007 0.011 0.188

0.294 0.158 0.034 0.019 0.005 0.014

0.221 0.087 0.038 0.006 0.015 0.142

0.301 0.163 0.068 0.016 0.022 0.092

0.298 0.207 0.042 0.009 0.066 0.211

0.304 0.197 0.052 0.008 0.054 0.095

0.297 0.16 0.049 0.007 0.038 0.101

0.188 0.064 0.044 0.007 0.002 0.205

0.214 0.1 0.037 0.003 0.004 0.138

0.218 0.082 0.061 0.002 0.012 0.147

0.284 0.131 0.049 0.012 0.021 0.13

0.27 0.17 0.026 0.011 0.002 0

0.277 0.15 0.053 0.005 0.039 0.115
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values of fitted model. Cook’s distance involves with 
both response and explanatory variables’ observation.

Table 3. Cook’s D values to detect influential observation

Observation number Cook’s D(>0.10)

4 0.104

6 0.212

29 0.259

42 0.183

44 0.116

Here, Cook’s distance has been used to detect the 
influential observation. From Table 3 and Fig. 1; It is 
seen that the influential observations are 4, 6, 29, 42, 44. 
It is also seen from table 4 that nine observations are 
leverage points.

Fig. 1. Plot for the detection of influential observations

Table 4. Observations with leverage points

Observations Maholanobis Distance Leverage (*)

4 3.4498 *

17 2.6425 *

19 3.3339 *

29 3.8935 *

31 2.8293 *

37 3.0604 *

40 2.6257 *

42 3.3657 *

44 3.1269 *

4.4	 Comparison of three methods
In this paper, the performance of S‑estimation is 

compared with the OLS and M‑estimation. Adjusted 
 has been used to test the goodness of fit of the 

models. The best model will have largest adjusted  
value and smallest Mean Absolute Percentage Error 
(MAPE). From Table 5; it is observed that S‑estimation 

Dependent variable ( ): Batting Average

Explanatory Variables :
: Runs scored/times at bat
: Doubles/times at bat
: Triples/times at bat
: Home runs/times at bat
: Strike outs/times at bat

4.2	 Test for Multicollinearity
While working with the multiple regression, 

multicollinearity is a major problem. Many assumptions 
of regression may be violated in the presence of 
multicollinearity. So, identification of multicollinearity 
is inevitable before going through the analysis. There are 
different methods for identification of multicollinearity. 
Most used methods are:

Variance inflation factor(VIF).
Eigen system analysis of .
Here, VIF method have been utilized to identify 

multicollinearity. The thumb rule is:
If VIF  - Need further investigation
VIF  - There is serious multicollinearity.

Table 2. VIF values of variables

Variable VIF

0

3.05

1.54

2.35

2.04

1.53

From Table  2, it is concluded that there is no or 
very little multicollinearity because VIF values are in 
the range of 0-3.05 for all the variables which is less 
than 4. If there was multicollinearity, then one should 
go for principal component regression (PCR) or ridge 
regression or any other remedies to cope up with the 
multicollinearity. 

4.3	 Detection of Influential Observation and 
Leverage Points
Cook’s distance (Cook, 1977) is widely used 

method to detect influential observations that affect the 
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has the largest adjusted  and lowest MAPE than 
M‑estimation and OLS method. So, S‑estimation has 
performed better than the others two methods. 

Table 5. Performance of the three methods

Methods Adjusted MAPE Significant Variables

OLS 0.8461 7.52

M Estimation 0.7431 7.81

S Estimation 0.8799 7.46

The fitted regression model using OLS-

� (19)
The fitted regression model using M‑estimation-

� (20)
The fitted regression model using S‑estimation-

� (21)
Table 6. Standard error of significant parameter estimates  

for all the models

METHODS
Standard error of parameter estimates 

Intercept

OLS 0.0171 0.1096 0.3130 0.0517

M Estimation 0.0179 0.1147 0.3276 0.0542

S Estimation 0.0112 0.0732 0.2342 0.0402

From Table 6; Standard errors of parameter 
estimates (significant variables) are meaningfully 
lower in case of S‑estimation as compared to OLS and 
M‑estimation. Again, the regression model has been 
estimated with ,  using S‑estimation. The 
fitted regression model-

� (22)

The value of adjusted  for the above estimated 
model is 0.8530. It means 85.30% variability of the 
response variable is explained by  and  All 
the variables are found to be significant at 1% level of 
significance.

5.	 CONCLUSION
In this paper, OLS, M‑estimation and S‑estimation 

have been discussed briefly. From the results, it is seen 

that M estimator shows lower adjusted  values and 
higher MAPE as compared to the OLS in spite of being 
a robust regression method. As discussed in earlier 
sections, M-estimator does not show its’ robustness 
properties when it deals with the leverage points as 
this estimator does not have the property of bounded 
influence. So, even one bad leverage point can be the 
enough reason for entirely break down of the model 
fitting. In this data, nine leverage points are exist, so 
that M estimator shows very poor results, even inferior 
to OLS. That means, M estimator is not robust in all 
the cases especially in the presence of leverage and the 
performance of M estimator can be inferior to OLS 
in the presence of many leverage points. On the other 
hand, S estimator has shown its’ worthy performance 
with higher adjusted , lower MAPE and lower 
standard error values of parameter estimates as 
compared to both OLS and M estimator as it has all the 
robustness properties including the bounded influence. 
From the final result, it can observe that batting average 
depends upon run scored/times at bat, doubles/times 
at bat and strike out/times at bat. Eventually, it is 
concluded that S‑estimation performs better than OLS 
and M‑estimation in the presence of leverage points.
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